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Abstract. We determine the Prokhorov radius of the family of distributions surrounding the Dirac
measure at zero whose first, second and fourth moments are bounded by given numbers. This provides
the precise relation between the rates of weak convergence to zero and the rate of vanishing of the
respective moments.
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1. Introduction and main result

We start with recalling the notion of Prokhorov distance of two probability meas-
uresu, v, which is generally defined on a Polish space with a metrighis is
given by

w(w,v) =inf{r > 0: u(A) < v(A") +r,v(A) < u(A") +r,

for every closed subset},

whereA” = {x : d(x, A) < r}. Note that in the case of standard real space with
the Euclidean metric, the Prokhorov distance of a probability megsuethe
degenerate ong concentrated at O can be written as

w(w, ) =inflr >0: u(l,) =>1—r}. Q)

Here and later od, = [—r, r], and/S stands for its complement.
For a given teiple of positive reals = (e3, €2, €4), we consider the family
M(E) of probability measures on the real line such that

/tid,u

Theorem 1 provides the precise evaluation of the Prokhorov radius

D(€) = sup m(u,do)
neM()

M) = {,u :

<€,.,l-:1,z,4}. @)

for family of measures (2).
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THEOREM 1. We have
D(ey, €2, €2) = minfe;*, /%), 3)

This is a refinement of a result in Anastassiou (1992) where the Prokhorov
radius D (e, €2) = 621/3 of the family with constraints on two first moments was
established. The problems of determining the Levy and Kantorovich radii under
two moment conditions were considered in Anastassiou (1987) and Anastassiou
and Rachev (1992), respectively. Anastassiou and Rychlik (1999) studied the Prok-
horov radius of measures supported on the positive halfaxis which satisfy condi-
tions on the first three moments. Since the Prokhorov metric induces the topology
of weak convergence, formula (3) describes the exact rate of weak convergence of
measures froroV (£) satisfying the three moment constraints to the Dirac one at
zero.

Though our question is stated in an abstract way, it stems straightforwardly from
applied probability problems in which rates of convergence of random error of a
consistent statistical estimate vanishes, then zero is the most natural limiting point.
Convergence in probability is implied by that of the first two moments. Adding
the fourth one, which has a meaningful interpretation in statistics, allows us to
obtain refined evaluations. These three moments have natural estimates, and so
one can easily control their variability. Moreover, the respective power functions
form a Tchebycheff system. Convergence of integrals for elements of such systems
implies and provides estimates for integrals of general continuous functions. The
latter convergence is described by the weak topology, and our solution gives a
guantitative estimate of uniform weak convergence (expressed in terms of equiva-
lent Prokhorov metric topology) for a large natural class of measures determined
by moment conditions.

Formula (3) is determined by means of a geometric moment theoretical method
of Kemperman (1968) that will be used in Section 2 for calculating

Lr(M) = infue./\/l(M),u(Ir) (4)

with given M = (my, m,, m4) and
MM) = {u: /tid,tL:mi,i =124

for all possiblemy, my, m4, andr > 0. In Section 3 we prove our main result;
having determined (4) for varioud, we first evaluate respective infima over the
boxes in the moment space

Lr(g)zlnf{Lr(M) |ml| gé‘i,izl, 254} (5)
for every fixedr, and then, leting vary, we determine

DE) =inflr>0:L.() >1—r}. (6)
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In the short last section we sketch possible directions for a further research.

2. Auxiliary moment problem

Fixing » > 0, we now confine ourselves on solving moment problem (4). This is
well stated iff

Me ) = {(ml, mo, I’)’I4) my € R, my = m%, my > m%}

Note thatWW = convI = con(T = (t,1° t*) : t € R}, the convex hull of the
graph of functioriR > r — (¢, t2, t*). Geometrically)) is a set unbounded above
whose bottom}V is a membrane spanned By The membrane can be represented
asW = U;soT Ty, WhereT_ = (—t,t2,t%), T, = (t,1%,t*), andAB denotes
the line segment with end-poin and B. The side surface consists of vertical
halflines Tt running upwards from the pointE € 7. Consider the following
surfaces inV:

AOR, R_ — the triangle with vertice® = (0,0,0), R, = (r,7%,r* andR_ =
(—r,r2,rh,

mem(R,,OR ;) = Up<;<, TRy, and meniR_, OR_) = U_,<,<oT R_ — the mem-
branes connecting., and R_ with the points of the curve8R, = {(z, 12, t*);
0<t<r}andOR_ = {(—t,1%, t* : 0 <t < r}, respectively,

R_R+T, ORQ, andOR_' — the infinite bands above the line SegmeRtsk,,
OR, andOR_, respectively.

They partition)V into five closed subsets with nonoverlapping interiors:
Wi — the set of points situated on and abaver R _,

W, — the moment points on and above m&n, OR.),
Ws — the points on and above méRy, OR_),

W, — the points betweeAOR, R_, mem(R,, OR,), memR_, OR_), andW/ =
Uo<ar<rT-T4, the last surface being a part of the bottom of the moment
space,

Ws— the moment points lying on and abo¢’” = U,>,T_T,.

The solution to (4) is expressed by different formulae for the elements of the above

partition.

THEOREM 2. The solution to (4) is given by

1—my/r?, if M €Wy,
(r — ImiD)?/(r? = 2lmalr + mp), if M € Wo U W,
(r? —m2)?/(r* — 2mor? + my), if M € Wi,
0, if M € Ws.

L(M) = ()
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One can easily verify that the formulae for neighboring regions coincide on their
common borders. In particular, this implies continuitylgf

Proof of Theorem 2First notice thad/\Vs is the closure of the convex hull of
T5) = {(, 2,14 : |t| > r}. The inner elements dfVs are the moment points
for measures supported éfiand therefore. (M) = 0 for all M € Ws.

The other formulae in (7) will be determined by means of the optimal ratio
method due to Kemperman (1968) that allows us to find sharp lower and upper
bounds for probability measures of a given set (here: the lower one for those of
I,) under the conditions that the integrals of some given functions with respect
to the measures take on assumed values (tfex*eiu =m;,i = 1,2,4). The
method can be used under mild assumptions about the structure of probability
space and functions appearing in the moment conditions (cf. Kemperman, 1968,
Section 5). These are satisfied in the case we consider and therefore we merely
present a version adapted to our problem instead of the general description. Given
a boundary poinW of W, W ¢ Ws, we take a hyperplarn® supportingWV at W,
and another on&{’ supportingWWs that is the closest one parallel to. Then for
every moment poinM in the closure of corV N'H) U Ws N'H’), we have

dM, H)
L.(M) = ALY (8)
where the numerator and denominator in (8) denote the distances from the moment
point M and hyperplané{ to H’, respectively.

We shall therefore take into account the hyperplaiesupporting pointdV <
U< TT U W' First consider the vertical plarig : m, = 0 that supports/V at
all points of0'. Then®’ : m, — r> = 0 is the closest and parallel & plane
that supports/Vs. Since N W = 0', andH’ N Ws = R_R,., then for every
M e con0t U R_R+T = Wi, we apply (8) to obtaii., (M) = 1 — my/r?.

Consider now a side hyperplafésuch thatt N W = T for some O< ¢ < r,
described by the formuld( : m, — 2tm; + t?> = 0. We can easily see that’
is the plane parallel t@{ that supportss along Ri. This can be written a%{’ :
my — 2tm1 + 2tr — r? = 0. Applying the standard formula

n n 1/2
>anr| /(3 4)
i=1 i=1

measuring the Euclidean distance between a goiat (yy, ... , y,) and a hyper-
planed : Y " | a;x; + b =0inR", we get

dM, H) = |my — 2mat + 2tr — r?|/(1 + 4%)Y2,
d(H,H) =d(H, Ry) = (r — )%/ (L + 452,
and, in consequence,
lmo — 2mqt + 2tr — r?|
(r —1)?

diY,A) =

L.(M) =

(9)
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for all m € con\/Iﬁ U Ri = T+R+T. Representingl as a point of the plane
containingT+R+T, we obtainm, = (r + t)(m1 — r) + r2, which enables us to
express in terms ofm, andm, as
_ (mar —mp)
(r —my)

This substituted into (9) yields

(r — my)?
I’Z— 21’}11" +m2.

L,(M) = (10)

Note that this holds for alld € W, = Uogtng+R+T.

The respective formula foM € Wjs is obtained by replacing:; by —m; in
(10). This is justified by the fact that the arguments of the optimal ratio method are
purely geometric, and bof and}s are symmetric about the plang = 0.

Consider now a plang{ that touches the bottom side ¥ along 7_T, for
some O< ¢ < r. This is defined by the formul®( : m4 — 2t?m, 4+ t* = 0. Then
H' @ mg — 2t2my — r* + 2t2r? = 0 is the closest parallel hyperplane tothat
supportsWs along R_ R, . Arguments similar to those applied in the analysis of
the side hyperplanes yield

dM, H) = |mg — 2mot? + 26%r% — ¥/ (1 + 442, (11)
d(H, H') = (r? — t9)%/(1 + 4", (12)
where
2 _
P (13)

2

re=—moy

is determined from the equatiany, = (> + %) (m, — r?) + r4, defining the plane
that contains botfi_ 7 andR_ R, . Dividing (11) by (12) and substituting (13) for

12 gives the penultimate formula in (7). Observe that this is valid for the moment
points of the trapezoids cofiv7, U R_R,, 0 < t < r, whose union formsV,.

This ends the proof of Theorem 2. O

3. Proof of Theorem 1

We first verify that fixingm, andm4 we minimize L, (my, my, m4) atm; = 0.

Note thatL,(M) for M € W; U W, U Wi does not depend on the valuemof,

and(mq, mo, mg) € W; implies (0, mo, my) € W;, i = 1, 4, 5. Differentiating the
second formula of (7) with respect ta,|, we obtain

L, (M) _ 2(r — |ma|)(Jma|r — my)
d|my| (r? — 2lm1|r + mp)?
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which is nonnegative foM € W, U Ws, becauseém;| < r andm, < |my|r there.
Therefore we decreask, (M) moving M € W, U W3 perpendicularly towards
the planem,; = 0 until we reach the border. Then we can move further entering
eitherW; or W, that would not result in change @&f. (M) until we finally arrive at
(0, m2, my).

Evaluating (5) we can therefore concentrate on the moment points from the
rectangular

Ro({(0, mp, mya) :m; < ¢€;,i = 2,4}, (14)

The points ofRg N W may generally belong to any o1, W, andWs. However,

if someM e RoNWs, which is possible whee, > r? andes > r*, thenL, (M) =
L.(&) = 0, which is useless in determining (6). Otherwise the moment points of
Ro belong to eithedV; or Wj. In the former casd., is evidently decreasing in
m, and does not depend a, see (7)). In the lattet., is decreasing im,4, and
increasing im,, becausen, < r?, my < mor?, and so

oL, (M) 2(r2 — ma)(mar? — my)
amp  (r* — 2mor? 4 my)?

for M € Ro N W4.
We now claim thatL, is minimized on (14) atE = (0, ¢, er?) with ¢ =
min{eoe4/r?} so that

L.(§) =L,(E)=1—¢€%/r? (15)

>0

The latter equation follows from the fact that thee }V;. We prove the former
using the following arguments. First observe thatjf> €,r?, we can exclude
from considerations all points situated aba@g for Eg = (0, 0, €72). Indeed, any
point M = (0, my, my) of this area can be replaced BY = (0, m», er?) € EoE
so thatL,(M’) = L,(M). Then we exclude all points dRy below OE, which
belong toW,. Keepingm. fixed and decreasing, until we reachDE, we actually
decreasd.,. What still remains to analyze S0EyE to the levelEyE, and finally
move them right ta€ which results in decreasing,.

Now we are only left with the task of determining (6) which, by (15), consists
in solving the equation % €2/r2 = 1 — r, or, equivalently,

min{rley, €4} = r°. (16)

If ej/ < eé/ % then the graphs of both sides of (16) cross each other atdgvahd

the solution ist;’°. Otherwise they meet below for r = €’°. These conclusions
establish the assertion of Theorem 1. a

4. Concluding remarks

A natural extension of the above problem consists in analyzing distributions tend-
ing to points different from zero. However, by reference to Anastassiou and Rychlik
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(1999), in this case one can hardly expect obtaining final results in form of nice
explicit formulae. Another question of interest is the Prokhorov radius described by
other moments. Also, one can replace Tchebycheff systems of specific powers by
elements of general families of functions, e.g. convex and symmetric ones. A next
step of the project is determining radii of classes described by moment conditions
in other metrics which induce the topology of weak convergence (see Anastassiou
(1987), Anastassiou and Rachev (1992)). Comparing rates of convergence of radii
of given classes of measures in various metrics would shed some new light on
mutual relations of the metrics.
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